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We welcome the chance to reply to the comments made by
Miller et al. (2003) on our recent paper (Mollet and Cailliet
2002). In most cases we do not feel that their comments have
merit, although we acknowledge that certain omissions and
errors remained in our published manuscript. Therefore, we
will use this opportunity to make those corrections to our
paper. We also present a brief, more general discussion of the
difficulties of calculating elasticities in stage-based models
and point to the problem of choosing the most appropriate
projection interval in both stage- and age-based population
models when the reproductive cycle is longer than 1 year.

We did not clearly state that our elasticities applied to
elasmobranchs with a 1-year gestation period, which was a
reasonable approximation for the three shark species, but not
for the one ray species we addressed. We also did not mention
that it is important to include survival to age one in the
elasticity calculations, not only in the post-breeding census
that we used, but also in a pre-breeding census. In addition,
not all lower-level elasticities were correctly calculated.

More recently, we were able to show that the mean age of
reproducing females at the stable age distribution are easily
calculated, as are the elasticity patterns (Appendix 1a, b).
These new relationships allow us to better explain why
stage-based models with few stages have drawbacks for
elasmobranchs, which have simple rather than complex life
cycles, where individuals of the same age might be in very
different demographic states (Caswell 1982). Appendix 1c(i)
demonstrates how powerful these relationships are.

It is important first to point out that our paper was strictly
a prospective analysis of four carefully selected elasmo-
branch species that aimed to identify the vital rates (primary
demographic parameters such as productivity and
survivorship) with the largest proportional effect on
population growth (λ) (i.e. the elasticities). These elasticities
are best for making recommendations for elasmobranch
management (Caswell 2001: section 18.1.3.3, p. 616–619).
We never intended our analyses to be an attempt to
understand elasmobranch life histories comprehensively, nor
especially to answer questions related to how vital rates
varied in the past, are varying now, or might vary in the

future (see Caswell 2001: p. 616). This would require a
retrospective analysis, also known as life table response
experiments (LTRE) decomposition analysis (Caswell 2001:
Chapter 10). We accept Caswell’s (2001) concepts,
recognising the caveats discussed by Frisk et al. (2002), who
in the end proceeded in a fashion similar to ours.

Frisk et al. (2002) used a three-stage model for the
barndoor skate Dipturus laevis and their own example is
most suitable to demonstrate the drawbacks of stage-based
models with few stages, as was advocated in our paper. Their
paper on the population dynamics of three skates included
life history tables (LHTs) for the little skate Leudoraja
erinacea and the winter skate L. ocellata. Had they included
a LHT for D. laevis, they would have realised that their
results for D. laevis are of limited value with regard to
management proposals. According to their abstract,
‘Elasticity analysis indicated that juvenile survival
contributed most to population growth in little skate and
winter skate, and adult survival contributed the most in
barndoor skate’. However, a Leslie matrix or LHT yields
E(juvenile survival)/E(adult survival) = 2.5–3.6, which
means that juvenile survival has by far the largest effect on λ
(Appendix 1c(ii)). A comparison of their elasticity results for
barndoor skate (mean age at first reproduction (α) = 12,
maximum age of reproducing females (w) = 50) and winter
skate (α = 9, w = 20) (Frisk et al. 2002: table 2) already
suggested that their elasticity pattern for the barndoor skate
was likely to be incorrect. We also point out that the mean
age of reproducing females at the stable age distribution in
their three-stage model is 9.1 years, which is less than the
mean age at first reproduction (assumed to be 12 years)
(Appendix 1c(iii)).

No recovery times after a catastrophic event were
provided, although D. laevis was considered to be overfished
but not at risk of extinction (Musick et al. 2000), vulnerable
(Casey and Myers 2000; Dulvy and Reynolds 2002), showing
declining population numbers (Stevens et al. 2000), near to
extinction (Casey and Myers 1998) and endangered as per
IUCN criteria (Dulvy 2003). We estimated the recovery time
from Frisk et al.’s (2002) three-stage-based model to be
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unreasonably low (3.4 years), whereas a Leslie matrix
predicts a recovery time of 47 years (Appendix 1d). As
outlined in Mollet and Cailliet (2002), starting with a state
vector of 1,0,0 (i.e. egg cases only), a projection based on the
three-stage-based model produces adults after only 3 years
and after 4 years the age distribution is already to within 90%
of the stable age distribution, which is unreasonable if the
mean age at first reproduction is assumed to be 12 years.

Mollet and Cailliet (2002) came to the conclusion that
stage-based models with few stages have drawbacks for
elasmobranch species, which are basically age-structured
over a relatively long lifespan (Brewster-Geisz and Miller
2000). Such models produce the same λ if a fixed-stage
duration (Caswell 2001) is used to calculate the fractions
graduating from one stage to the next. However, generation
and recovery time estimates are different. No data are
available that would allow us to test which model is better
and we should, therefore, be guided by the plausibility of
predicted results (Hilborn and Mangel 1997).

With regard to the comments by Miller et al. (2003) on
Brewster-Geisz and Miller (2000), after many discussions
with the senior author (K. Brewster-Geisz, personal
communication), we came to an understanding that: (i)
Anderson (1990) and Hoenig and Gruber (1990) meant
age-based ‘full’ Leslie matrices rather than stage-based
models to study population dynamics; (ii) a stage-based
model produced no real advantage over a Leslie matrix or
LHT, with elasticities summed over age-classes; (iii) there
was no basis to Miller et al.’s (2003) claim that there are
problems in application of life-tables to long-lived marine
species with the implication that one could construct a
stage-based model when it was not possible to construct a
LHT; and (iv) there was also no basis to their claim that for
long-lived species, such as the sandbar shark, small errors in
parameters estimates can become magnified.

We now also suggest that the management proposal for
the sandbar shark, Carcharhinus plumbeus, (based on their
five-stage model) requires scrutiny. The elasticity pattern of
their five-stage model was phrased in terms of reproduction,
growth, and stasis, terms that are generally more suitable for
plants; for animals it might be better to use fertility, juvenile
survival and adult survival (Heppell et al. 2000).

We were well aware that the immortality in the
Brewster-Geisz and Miller (2000) five-stage model is taken
care of by total mortality (Z = M + F), which makes the
contribution of unreasonably old sharks negligibly small.
However, this has little to do with correct parameterisation;
it simply means that a Leslie matrix or LHT will not produce
exactly the same λ. The limiting level of fishing mortality
was mentioned by us and is r = ln(λ). Dividing the projection
matrix A by λ in the equation Nt+1 = A Nt = λ Nt is equivalent
to adding F = r to M (then calculation of new survival rates),
and the new λ, with fishing included, will become λ/λ = 1
(stationary population).

We were also well aware of the importance of having both
verification and validation in age and growth studies
(Cailliet et al. 1986; Cailliet 1990). However, we maintain
that validated age-specific life history information, although
it is nice to have, is not necessary to get a reasonable estimate
of potential population growth (e.g. see Cortés 2002). Due to
a difference in the interpretation of growth bands in the
shortfin mako (Isurus oxyrinchus) (Pratt and Casey 1983;
Cailliet et al. 1983; Campana et al. 2002), age at first
reproduction for this species could be 7 years, or more likely
14 years, but a demographic analysis would still be better if
it were age-based.

We are not convinced by the statement in Miller et al.
(2003) that tagging studies have contributed a lot to our
understanding of elasmobranch population dynamics.
However, such tag–recapture studies can provide survival
rates for size-based stages. To our knowledge, this has only
been done successfully for the lemon shark Negaprion
brevirostrus (Gruber et al. 2001), and the sizes of the sharks
in their study were converted to age.

Some of the vital parameters (in particular, the most
important ones, i.e. the survival rates) are poorly known for
most elasmobranchs. It is true that an age-structured model
suffers shortcomings, but why compound it by using a
stage-based model? A stage-based model cannot deal with a
logistic fertility function (ogive) unless additional age-classes
are used, and one might as well use the full Leslie matrix. We
(Mollet and Cailliet 2002) tried to use variable stage duration
as per Caswell (2001), but encountered sufficient difficulties
and thus decided not to pursue this line of investigation.

Frisk et al. (2001) used a surrogate r' = ln(f)/Tm following
Jennings et al.(1998), where Tm is said to be an index of
cohort generation time (= µ1), which was replaced by age at
maturity (α) without explanation. Figure 3 in Frisk et al.
(2001) included estimates of mortality, M, and we see no
good reason why they did not calculate r from a Leslie matrix
or LHT and provide the best possible deterministic potential
population growth rates for elasmobranchs, as we did. This
would have allowed Frisk et al. (2001) to include the
appropriate reproductive cycle, rather than assuming a 1 year
cycle for all elasmobranchs (Cortés 2002; Mollet et al.
2000).

We also suggest that using estimates for survival rates is
better than omitting them all together. The definition of
generation time is given by T = ln(R0)/r (where R0 = net
reproductive rate per generation) and, therefore, r = ln(R0)/T
(Caswell 2001). Comparison with the equation given for
surrogate r' implies that somehow R0 becomes m = f/2 =
female fertility, and it can be shown that this is equivalent to
the unreasonable claim that the life expectancy at age at
maturity (α) is determined by juvenile survival alone and
that adult survival is immaterial.

We agree that alternative models are desirable (Hilborn
and Mangel 1997). However, Miller et al. (2003) claim that
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in data-poor species stage-based models can provide insights
into elasmobranch population dynamics. We disagree.
Stage-based models with few stages have short-term or
transient dynamics that are totally different from
age-structured models and the corresponding recovery time
estimates are generally not very useful. A better way to cope
with data-poor species that have unvalidated age and growth
studies is to incorporate uncertainty, as was done by Caswell
et al. (1998) or Cortés (2002), as suggested by Mollet and
Cailliet (2002). In addition, stage-based models with few
stages that use fixed-stage duration to calculate the fractions
graduating to the next stage require great care when
calculating the elasticity pattern of the lower level vital rates
of interest (e.g. survival) (Caswell, 2001).

We suggest that some of the difficulties encountered
when calculating elasticities of lower level vital parameters
arise because Caswell (2001) appears to have conflicting
procedures for this. Caswell (2001) used his equation 9.103
on page 203 (elasticity of λ to σi is the sum of the elasticities
to Pi and Gi) for the desert tortoise example of Doak et al.
(1994) in which a fixed-stage duration was used to calculate
the fractions graduating. However, Caswell (2001) also
derived equations for calculating lower-level elasticities of
survival (σi) for fixed-stage duration models, first for the λ
= 1 approximation (Equation 18.11) and then for iteration of
λ (Equation 18.16). These equations were then applied to the
loggerhead sea turtle (Crouse et al. 1987; Crowder et al.
1994). The eight-stage model of Doak et al.(1994) used
fixed-stage duration and we surmise that Equation 9.103
should not have been used. The elasticity pattern shown in
Caswell (2001: fig. 9.3), based on Equation 9.103, is
reasonably close to the elasticity pattern obtained from a
Leslie matrix because Doak et al. (1994) used five juvenile
stages of short duration (1, ~3, ~3, ~3, ~3). Had they
combined the four juvenile stages with stage duration of
~3 years into one stage of duration 12 years, the resulting
elasticity pattern calculated according to Equation 9.103
would have been much different from that based on a Leslie
matrix or LHT [e.g. E(σ2) from 5 × 5 stage-based matrix =
E(P2)+ E(G2) = 0.20 + 0.06 = 0.26, compared with E(σ2) =
(14–2) × 0.0415 = 0.50 from a 60 × 60 Leslie matrix
(α = 14). The latter value agreed with E(σ2) from the 5 × 5
matrix, when calculated empirically with or without iteration
of λ (Crowder et al. 1994). In addition, our empirical
calculation of the elasticities shown in figs 18.1 and 18.2 in
Caswell (2001), based on E(x) = (λx+0.01x – λx–0.01x)/0.02 λx

(Crowder et al. 1994), indicated that the elasticities without
and with iteration, respectively, are the same after
normalisation (sum = 1.0). For example, from fig. 18.1 E(σ1)
= ~0.055/~1.504 = 0.036 (as in fig. 18.2) and the same
applies to E(σ2), E(σ3), E(σ4), and E(σ5) + E(σ6) + E(σ7).

Mollet and Cailliet (2002) did not fully understand why a
three-stage model was so successfully used for the killer
whale Orcinus orca, based on a geometric distribution

(Caswell 2001). The use of a geometric distribution to
calculate the fraction graduating to the next stage implies
that the age-structure within a stage is constant,
corresponding to a survival of 1.0, which is a reasonable first
approximation for a species with high juvenile and adult
survival (note that the projection matrix A is based on the
actual survival rates). However, elasmobranchs have much
lower survival rates than O. orca and we cannot use a
geometric distribution in this situation (Mollet and Cailliet
2002). Therefore, we feel that our reservations about
stage-based models for elasmobranchs are fully justified. We
now also suggest that the elasticity pattern in Brault and
Caswell (1993) is different from that calculated with the
corresponding Leslie matrix, which we presume to be better.
Using the elasticities of lower level parameters displayed in
table 1 of Brault and Caswell (1993), we calculated
σ2/σ3 = 0.3785/0.5585 = 0.68 (i.e. adult survival has the
largest effect on λ by far). In contrast, our Leslie matrix
produced σ2/σ3 = 0.5353/0.4236 = 1.26 (i.e. juvenile
survival has the largest effect on λ (Appendix 1c(iv)).

Stage-based models are difficult to set up correctly
because one has to understand post-breeding versus
pre-breeding census, birth-pulse versus birth-flow, the
calculation of discounted fertilities (Fi’s), and the calculation
of the fractions graduating from one stage to the next. In
addition, iteration of λ is required to solve the projection
matrix because the matrix elements are functions of λ if the
fixed stage duration is used to calculate the fractions
graduating, which is the most suitable stage-duration
distribution for elasmobranchs. Therefore, elasticities of the
lower level vital rates of interest, as they appear in a Leslie
matrix or in a LHT, are not easily calculated and require
empirical calculations or a good knowledge of differentiation
(Caswell 2001).

We now feel even more strongly that Mollet and Cailliet’s
(2002) reservations about stage-based models with few
stages are fully justified. Elasmobranchs have a relatively
simple life cycle, rather than a complex one, and we suggest
that there is no need to consider stage-based models with few
stages. Although Heppell et al. (2000) combined only the
adult age classes of mammals into one stage with promising
results, we feel that it is still better to use the full Leslie
matrix or a LHT because even their model yields a distorted
elasticity pattern. The mean age of reproducing females at
the stable age distribution (A

–
) of their model is always a little

higher than that of the corresponding Leslie matrix or LHT
(Appendix 1e(i),(ii)). Because E(fertility) = 1/A

–
,  E(fertility)

is underestimated, and this leads to an underestimate of
E(juvenile survival) with a corresponding overestimate of
E(adult survival). In a few cases the distortion of the
elasticity pattern is considerable because A

–
(stage-based

model) is unreasonably large (Appendix 1e(iii)).
There are also difficulties in the interpretation of the

elasticity pattern for both stage-based and Leslie matrix or
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LHT models when the projection interval is different from
the reproductive cycle. Assume that a 1-year projection
interval is used for a species with a 5-year reproductive cycle
and that the calculation produced A

–
= 25 years and therefore

E(fertility) = 1/26 = 3.85%. The use of a 5-year projection
interval suggests that A

–
will be ~25/5 = 5 (5-year units) in a

first approximation and therefore E(fertility) = 1/(~5 + 1) =
~16.7%, which is approximately five times larger. This
illustrates that the use of different projection intervals can
produce large changes in the elasticity pattern, in particular
for E(fertility) and the corresponding ratios (see Appendix 1f
for a more detailed example).

Indeed, the reproductive cycles of the killer whale
(Olesiuk et al. 1990) and the Australian population of the
green turtle Chelonia mydas (Chaloupka 2002) both are
approximately 5 years and a 5-year projection interval might
be best to calculate population growth and elasticity pattern.
Many elasmobranchs have a reproductive cycle of 2 years
(Cortés 2002) and a few have a reproductive cycle of 3 years
(Mollet et  al. 2000; Cortés 2002), for which projection
intervals of 2 and 3 years, respectively, should be used rather
than the standard 1 year. This suggests that elasticity patterns
and resulting management proposals have to be interpreted
cautiously when the reproductive cycle does not agree with
the projection interval used.
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(a) Proof that  = A
–

<w,v> = 1/E(fertility) = 1/E1

Proof that <w,v> = A
–

for a 4 × 4 Leslie matrix with terms F2, F3, F4,
P1, P2, P3:

Age-structure: w1 = 1, w2 = P1 λ–1, w3 = P1P2 λ–2, w4 = P1P2P3 λ–3;
Reproductive values: v1 = 1, v2 = F2 λ–1 + P2F3 λ–2 + P2P3F4 λ

–3, v3
= F3 λ–1 + P3F4 λ–2, v4 = F4 λ–1;

<w,v> = scalar product = 1 + P1F2 λ–2 + 5 more terms;
Replace 1 with characteristic equation, which is:
1 = P1F2 λ–2 + P1P2F3 λ–3 + P1P2P3F4 λ–4;
Collect terms and compare with equation for A

–
,  which  is:

A
–

 = 2 λ–2 P1F2 + 3 λ–3 P1P2F3 + 4 λ–4 P1P2P3F4;
It shows that <w,v> = A

–
. This can be generalised for any Leslie

matrix and it applies to stage-based models as long as the first stage is
an age class (observation based on empirical checks of a large number
of stage-based matrices).

For the second part, that is, <w,v> = 1/E(fertility), see Caswell
(2001, p. 232, Equation 9.96). It is correct that this equation was
derived for the stage-based matrix model of Heppell et al. (2000);
however, empirical calculations (n > 200) showed that it applies also to
a Leslie matrix.

(b) Calculation of normalised elasticities

The following equations can be used to calculate the normalised
elasticities of interest from the Leslie matrix (i.e. summed fertility
elasticities, summed juvenile survival elasticities including survival to
age one, summed adult survival elasticities and all three elasticities
divided by the sum of the elasticities). Note that the elasticities in
Mollet and Cailliet (2002) were not normalised and their sum was 1 +
E1 and that GP = gestation period:

(1) E1 = E(fertility) = 1/( A
–

+ 1);
(2) E2 = E(juveniles survival) = (α – GP)/( A

–
+ 1);

(3) E3 = E(adult survival) = (A
–
 – α + GP)/( A

–
+ 1);

(4) E2/E1 = α – GP;
(5) E3/E1 = A

–
– α + GP;

(6) E2/E3 = (α – GP)/(A
–

– α + GP)

The (A
–

/α)-ratio  is promising for quick evaluation of the elasticity
pattern. If we assume that GP = 0, then  A

–
/α = 2 produces E2/E3 = 1.

For species with A
–

/α < 2  (corresponding to relatively low adult
survival and high fertility) E(juvenile survival) is larger than E(adult
survival); for species with A

–
/α > 2  (corresponding to relatively high

adult survival and low fertility) the reverse holds.

(c) Applications

(i) Relationship between adult survival and generation time 
(Heppell et al. 2000: fig. 3)

Heppell et al. (2000) reported a hump-shaped correlation between
adult survival and generation time (µ1) in their fig. 3. We suggest that
the hump it is an artifact of excluding survival to age one in their
elasticity calculations, which leads to an overestimate of adult survival,
in particular for the α = 1 and 2 species. If survival to age one is
included and if adult survival is graphed against A

–
instead of µ1, then

the relationship is as expected and follows our Equation 3 in Appendix
1b with GP = 0: E(adult survival) = (A

–
– α)/(A

–
+ 1) with α used as

parameter between 1 and 14 years. It is an indication of how powerful
our theoretical calculation of normalised elasticities in terms of α, A

–
,

and GP are.

(ii) Calculation of normalised elasticities from 50 × 50 Leslie matrix 
for Dipturus laevis

From 50 × 50 elasticity matrix after normalisation or using
Appendix 1b with α = 12 years and A

–
= 15.018 years (A

–
/α = 1.25):

E(fertility) = E1 = 0.06243;
E(egg case survival) = 0.06243 (=E1);

Heppell, S. S., Crowder, L. B., and Menzel, T. R. (1999). Life table
analysis of long-lived marine species with implications for
conservation and management. American Fisheries Society
Symposium 23, 137–148.

Hilborn, R., and Mangel, M. (1997). ‘The Ecological Detective:
Confronting Models with Data.’ (Princeton University Press:
Princeton, NJ, USA.)

Hoenig, J. M., and Gruber, S. H. (1990). Life-history patterns in the
elasmobranchs: implications for fisheries management. In
‘Elasmobranchs as Living Resources: Advances in the Biology,
Ecology, Systematics, and the Status of the Fisheries’. (Eds H. L.
Pratt Jr., S. H. Gruber, and T. Taniuchi.) pp. 1–16. (NOAA Technical
Report NMFS, No. 90. United States Department of Commerce:
Washington, DC, USA.) 

Jennings, S., Reynolds, J. D., and Mills, S. C. (1998). Life history
correlates of responses to fisheries exploitation. Proceedings of the
Royal Society of London. Series B 265, 333–339, doi:10.1098/
RSPB.1998.0300.

Miller, T. J., Frisk, M. G., and Fogarty, M. J. (2003). Comment on Mollet
and Cailliet (2002): confronting models with data. Marine and
Freshwater Research 54, 737–738.

Mollet, H. F., and Cailliet, G. M. (2002). Comparative population
demography of elasmobranchs using life history tables, Leslie
matrices and stage-based matrix models. Marine and Freshwater
Research 53, 503–516, doi:10.1071/MF01083.

Mollet, H. F., Cliff, G., Pratt, H. L., Jr, and Stevens, J. D. (2000).
Reproductive biology of the female shortfin mako, Isurus
oxyrinchus Rafinesque, 1810, with comments on the embryonic
development of lamnoids. US National Marine Fisheries Service
Fishery Bulletin 98, 299–318.

Musick, J. A., Harbin, M. M., Berkeley, S. A., Burgess, G. H., Eklund,
A. M., et al. (2000). Marine, estuarine, and diadromous fish stocks
at risk of extinction in North America (exclusive of Pacific
salmonids). Fisheries 25, 6–30.

Olesiuk, P. F., Bigg, M. A., and Ellis, G. M. (1990). Life history and
population dynamics of resident killer whales (Orcinus orca) in the
coastal waters of British Columbia and Washington State. In
‘Individual Recognition of Cetaceans’. (Eds P. S. Hammond, S. A.
Mizroch, G. P. Donavan.) pp. 209–243. (Report of the International
Whaling Commission, Special Issue No. 12: Cambridge, UK.)

Pratt, H. L., Jr, and Casey, J. G. (1983). Age and growth of the shortfin
mako, Isurus oxyrinchus, using four methods. Canadian Journal of
Fisheries and Aquatic Sciences 40, 1944–1957.

Stevens, J. D., Bonfil, R., Dulvy, N. K., and Walker, P. A. (2000). The
effects of fishing on sharks, rays, and chimaeras (chondrichthyans),
and the implications for marine ecosystems. ICES Journal of Marine
Science 57, 476–494, doi:10.1006/JMSC.2000.0724.

Manuscript received 19 February 2003; revised and accepted 18 August 
2003.

Appendix 1. Calculation procedure for estimating the mean age of reproductive females and elasticity patterns in a population with a 
stable age distribution with applications
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E(juvenile survival) = E2 = 11 × 0.06243 = 0.6867;
E(adult survival) = E3 = 0.1884; and
E2/E3 = 3.64.
If we assume that maturing juveniles have adult survival, as was

done by Frisk et al. (2002), then E2/E3 = (0.6867 – 0.06243)/(0.1884 +
0.06243) = 2.49.

(iii) Calculation of A
–

= <w,v> for Dipturus laevis from data in 
Table 2 of Frisk et al. (2002)

Note that we have to use w with w1 = 1.0:
A
–

= w1v1 + w2v2 + w3v3 = (0.50/0.50) 1.0 + (0.47/0.50) 4.08 +
(0.03/0.50) 71.01 = 9.1 years, which ought to be compared with α =
12 years, i.e. the mean age of reproducing females is smaller than the
mean age at first reproduction.

(iv) Calculation of σ2/σ3 for Orcinus orca from 36 × 36 Leslie matrix 
or LHT

α = 15 years, A
–

= 24.29 years (A
–

/α = 1.62)  and we use GP = 1 year
because maturing juveniles are pregnant adults. From our Appendix 1b:

E(fertility) = E1 = 0.03954 (=E(calf survival));
E(juvenile survival) = E2 = 14 × 0.03954 = 0.5536;
σ2 = E2 – E1 = 0.5140;
(subtracting the elasticity of calf survival from the elasticity of

juvenile survival to be able to compare with σ2 given by Brault and
Caswell (1993))

E(adult survival) = E3 = σ3 = 0.4069; and
σ2/σ3 = 0.5140/0.4069 = 1.26.

(d) Estimation of recovery time after a catastrophic event for Dipturus 
laevis based on three-stage model by Frisk et al. (2001) following 
Caswell (2001)

The damping ratio ρ = λ1/|λ2| is 3.90, versus 1.05 for the Leslie matrix.
The time required for the contribution of λ1 to become 10 times as great
as that of λ2 is given by t10 = ln(10)/ln(ρ) = 1.7, versus 47 years for the
Leslie matrix. Because |λ2| = |λ3|(complex conjugate solutions), we
expect a better t10 estimate to be ~2 × 1.7 years = 3.4 years, which was
confirmed by a projection matrix analysis.

(e) Calculation of ratio A
–

(stage-based model; Heppell et al. 2000) /A
–

(Leslie matrix)

(i) Proof that A
–

(stage-based model; Heppell et al. 2000) is greater 
than A

–
(Leslie matrix)

A
–

(stage) = Σ wivi (i = 1 to α)
= w1v1 + w2v2 + w3v3 +... + wαvα
= α – 1 + wαvα
A
–

(Leslie matrix) = Σ wivi (i = 1 to w)
= w1v1 + w2v2 + w3v3 +... + wαvα +... wwvw
= α – 1 + wαvα +... + wwvw
= α – 1 + Σ wivi (i = α to w)
We have (using S for stage and L for Leslie):
(A) wα(S) = Σ wi(L) (i = α to w),
proportional number in adult stage of Heppell-matrix equals the

sum of the proportional numbers in all adult age classes of the
Leslie-matrix; and

(B) vα(S) = vα(L) > vα+1(L) >... > vw(L),
the reproductive value of the adult stage in the Heppell-model

equals the reproductive value of the first adult age-class in the Leslie
matrix and is larger than all subsequent reproductive values of adult
age-classes.

Therefore wαvα (S) > wαvα (L) +... + wwvw (L) = Σ wivi (L) (i = α to
w),

and A
–

(S) = α – 1 + wαvα(S) > A
–
(L) = α – 1 + Σ wivi (i = α to w).

(ii) Empirical calculation of the mean ratio  (stage-based model; 
Heppell et al. 2000)/ (Leslie matrix)

We calculated A
–

(stage-based model; Heppell et al. 2000) and
A
–

(Leslie matrix) for all 50 mammals given in Appendix A of Heppell
et al. (2000), ESA’s Electronic Data Archive: Ecological Archives
E081–006. The mean ratio A

–
(with adult stage)/ A

–
(Leslie matrix)  was

1.10, CV = 8.3%, range 1.002 (Lynx) – 1.36 (Dall’s sheep), n = 50.

(iii) Example when A
–

(stage-based model) is unreasonably large

For chimpanzees (Pan troglodytes) A
–

(stage-based model) was
37.2 years (A

–
(stage)/α = 2.66), which ought to be compared with the

maximum possible A
–

= (α + w)/2 = (14 + 50)/2 = 32 years (as λ = 0.97
> σ (adult) = 0.95). The Leslie matrix or LHT produced a more
reasonable A

–
= 29.1 years (A

–
(LHT)/α = 2.08, A

–
(stage)/A

–
(LHT) =

1.20). This produces a distortion of the elasticity pattern because
A
–

(stage) is unreasonably large. The stage-based model has E(fertility)
= 1/38.2 = 2.62% and E(juvenile survival)/E(adult survival) = 0.61,
whereas the LHT yields E(fertility) = 1/30.1 = 3.32% and E(juvenile
survival)/E(adult survival) = 0.93.

(f) Effect of the projection interval on the elasticity pattern of the green 
turtle (Chelonia mydas)

The usual calculations of population growth and elasticity pattern for
marine turtles use a projection interval (PI) of 1 year in combination
with an effective annual fertility. Using the vital rates (including α =
35 years and w = 59 years) from Chaloupka (2002) in a 59 × 59 Leslie
matrix with PI = 1 yielded A

–
= 46.06 years (A

–
/α = 1.32;  R0 = 0.6966,

λ = 0.9922). Our Appendix 1b produced the following elasticity pattern
(using GP = 0, which is a reasonable approximation for sea turtles):

E(fertility) = E1 = 2.125%, E(juvenile survival) = E2 = 74.35%,
E(adult survival) = E3 = 23.50%, E2/E1 = 35.0, E3/E1 = 11.6,
E2/E3 = 3.16.

This green turtle population has a remigration interval (=
reproductive cycle) of ~5 years (Chaloupka 2002) and we suggest PI =
5 years is more appropriate to calculate population growth and
elasticity pattern. We now have α = 7 (5-year units) and in a first
approximation A

–
= 46.06/5 = 9.21 (5-year units). Appendix 1b now

yields:
E1 = 9.79%, E2 = 68.54%, E3 = 21.66%, E2/E1 = 7.0, E3/E1 = 2.21,

E2/E3 = 3.16.
E1 and related ratios change by approximately a factor of five,

whereas E2/E3 remains constant. In this example, where α = 35 years is
a multiple of five and w = 59 years is close to a multiple of five, we can
easily calculate the new A

–
from a 11 × 11 Leslie matrix instead of using

an approximation. As expected (Mollet and Cailliet 2002), the
calculated A

–
of 8.81 (5-year units) = 44.05 years (A

–
/α = 1.26)  is  a

little smaller because λ increases slightly (R0 = 0.7626, λ = 0.9711(1/5)

= 0.9941). Appendix 1b yields:
E1 = 10.19%, E2 = 71.33%, E3 = 18.48%, E2/E1 = 7.0, E3/E1 = 1.81,

E2/E3 = 3.86.
E1 and related ratios change by a factor of five (approximately),

whereas E2/E3 remains reasonably constant. It is also straight forward
to calculate elasticity patterns with juveniles divided into pelagic
juveniles, benthic juveniles, and sub-adults, and adults divided into
maturing adults and adults (the age-classes used by Chaloupka (2002)).
All three deterministic calculations presented here indicate that juvenile
survival has by far the largest effect on population growth, whereas the
stochastic simulation model by Chaloupka (2002) indicated that
fertility and adult survival had the largest effect, which we find difficult
to understand.


